Trajectory-Aware Rate Adaptation for Flying Networks

EAI SIMUTools 2023 - 15th EAI International Conference on Simulation Tools and Techniques

Rúben Queirós (ruben.m.queiros@inesctec.pt) PhD Student, FEUP Research Assistant, Wireless Networks, CTM, INESC TEC

14-15 December 2023

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

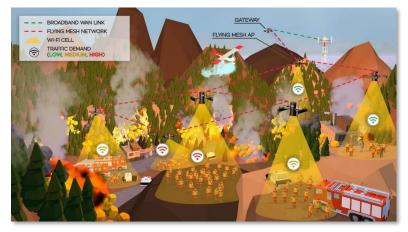
00

Presentation Overview

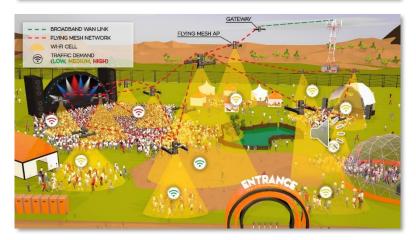
• Introduction: Context, Motivation and Contributions

- Trajectory Aware Rate Adaptation (TARA)
- Simulation Results
- **Conclusions** and Future Work

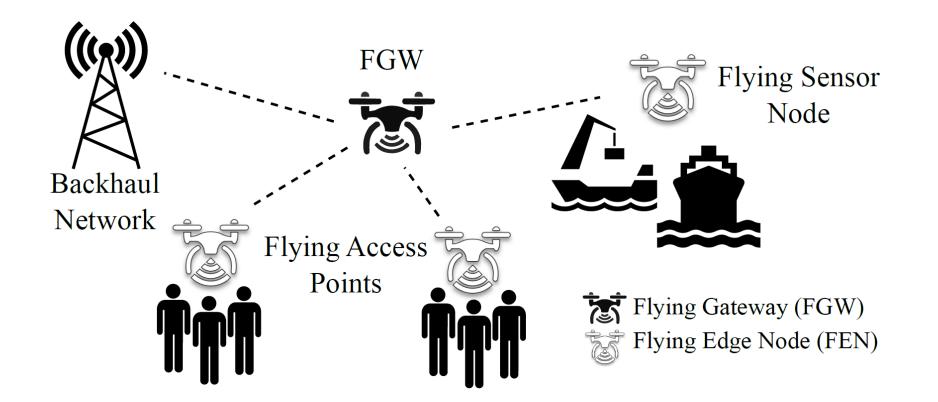
Introduction


Introduction – Context

Unavailable Communications Infrastructure


- Natural and man-made disasters
- Offshore maritime activities
- Temporary Crowded Events

On-demand Aerial Networks


- Composed of Unmanned Aerial Vehicles (UAVs)
- Fast, cost-effective and flexible solution
- Network coverage extension and increased capacity

Motivation

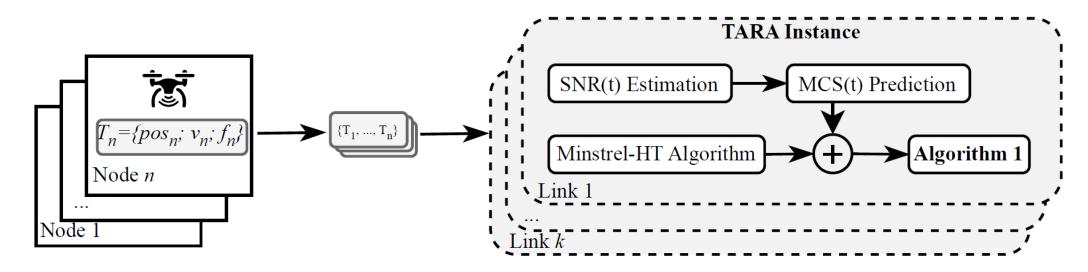
Existing works propose Rate Adaptation algorithms that do not consider the specific characteristics of Flying Networks

Contributions

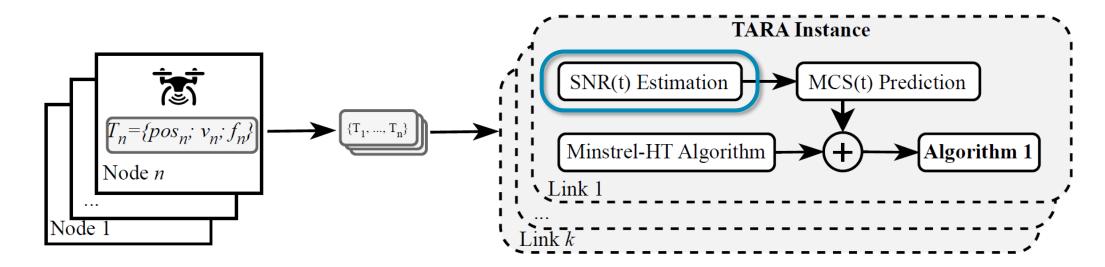
Trajectory Aware Rate Adaptation (TARA) Algorithm

Uses the future trajectories of Flying Nodes Estimates future changes in Link Quality

Performs Rate Adaptation Accordingly

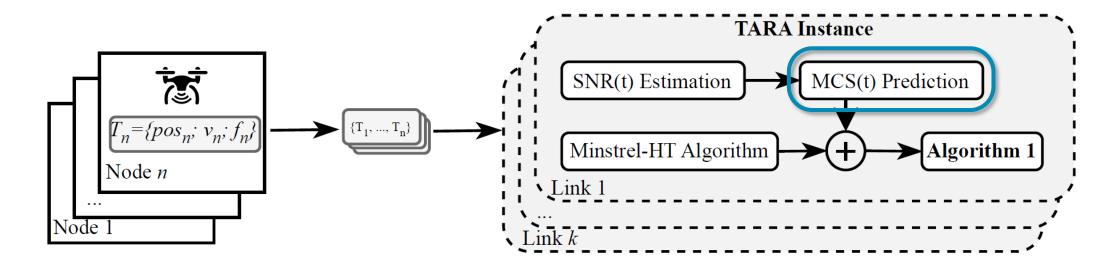

Extensive ns-3 simulation validation

Trajectory Aware Rate


Adaptation (TARA)

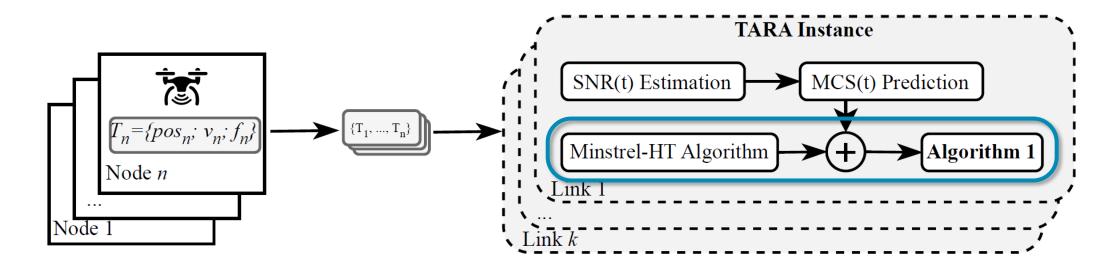
Trajectory Aware Rate Adaptation: Architecture

- Estimates future link Specific Signal to Noise Ratio (SNR)
- Calculate the optimal MCS prediction
- Modify Minstrel-HT retry chain to include the prediction
- Repeats for every new node trajectory


Trajectory Aware Rate Adaptation

Estimating future Link Specific SNR ...

- Strong Line of Sight between 2 Flying nodes → Friis Path Loss Model
- Trajectory Information \rightarrow Position Functions
 - we discretize time in 50ms slots
- Distance between nodes of a link \rightarrow Link Specific SNR


Trajectory Aware Rate Adaptation

Calculating Optimal MCS Prediction ...

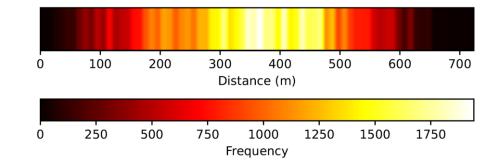
- Nist Error Rate \rightarrow Models OFDM (no interference, ±1 dB margin)
- Choose target Bit Error Ratio (BER) \rightarrow 1.0e-6
- Build a lookup table that maps (MCS, BER) \rightarrow SNR Threshold
- Optimal MCS → Link SNR satisfies the highest SNR Threshold

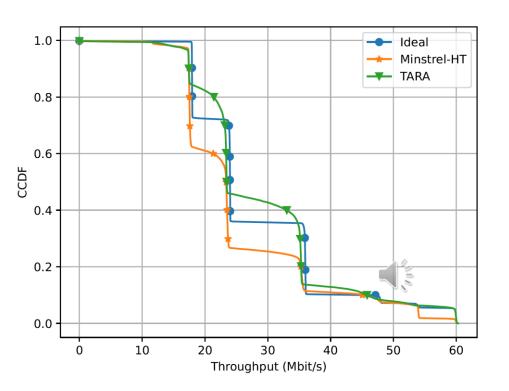
Trajectory Aware Rate Adaptation

Modifying Minstrel-HT to include Optimal MCS...

- Original Minstrel-HT uses 3 Rates and a Retry Chain Table
 - MaxTP, MaxTP2 and MaxProb \rightarrow Updated every 50ms based on success metrics
- We modify the Retry Chain Table to include TARA MCS prediction
 - TARA MCS, MaxTP, MaxTP2 MaxProb
- If Frames are lost using TARA MCS → falls back to original Minstrel-HT

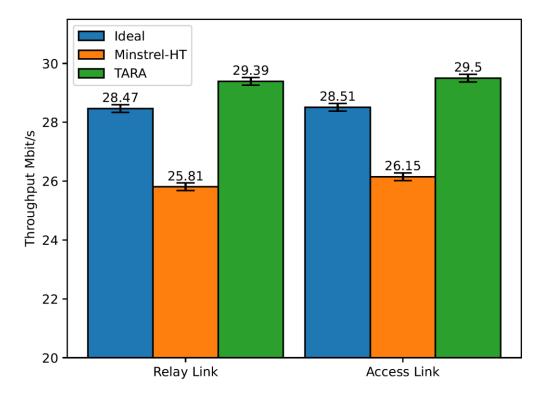
Simulation Results

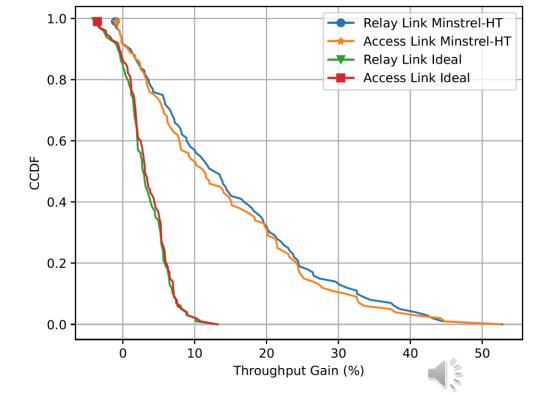

Simulation Scenario Setup


- Simulator ns-3 (version 3.38)
- Different WLAN Channels for each link
- UDP Traffic Generation
 - Above Link capacity
 - Constant Size (1400 bytes)
 - Relayed through FGW
- Random Initial Positions
 - Within 1000x1000 m area
- Random Trajectories
 - Updated every 30 seconds

FEN FEN VLAN Channel 4	WLAN Channel 36 8 Node Movement
x = 1000 m	
Configuration Parameter	Value
Wi-Fi Standard	IEEE 802.11n
Propagation Delay Model	Constant Speed
Propagation Loss Model	Friis
Error Rate Model	NistErrorRateModel
Channel Bandwidth	$20 \mathrm{~MHz}$
Transmission Power	20 dBm
RX/TX antenna gains	0 dBi
Wi-Fi MAC	Ad-hoc
$ ho_{BER}$	1e-6
au	50 milliseconds
Δ	30 seconds

Extensive Simulation Results


- 100 Simulation runs of 300 seconds each
- Comparison with Minstrel-HT and Ideal Rate Adaptation algorithms
 - Ideal knows the SNR at the receiver by means of an out of band mechanism
 - Minstrel-HT is the default algorithm used in Linux Systems
- Node Distance Distribution justifies throughput values distribution
- Median (50th percentile) throughtput results are all within 2% difference.
- Throughput improvement over Minstrel-HT for the 30th and 70th percentiles



Extensive Simulation Results

Mean Throughput with 99% Confidence Interval

Throughput Gains comparing TARA with Minstrel-HT and Ideal (both links)

TARA achieves a throughput gain of up to 53% compared to Minstrel-HT and positive gains in 92% of the simulation runs

Conclusions

Conclusions and Future Work

- Proposal of a Trajectory Aware Rate Adaptation Algorithm
- Simulation results show gains of up to 53% when compared with Minstrel-HT
- Simulation results and source code is **publicly available**

For Future work...

- Evaluate TARA Experimentally
- Address scenarios with multiple FENs and FGWs
- Stochastic Path Loss Models
- Channel Interference Management

U. PORTO FEUP FACULIDADE DE ENCEN

Thank you!

Questions?

Acknowledgements:

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020. The first author thanks the funding from FCT, Portugal under the PhD grant 2022.10093.BD.

EAI SIMUTools 2023 - 15th EAI International Conference on Simulation Tools and Techniques

T +351 222 094 000 R DR. ROBERTO FRIAS info@inesctec.pt www.inesctec.pt 4200-465 PORTO

INESC TEC

f in y d 🕑

PORTUGAL