
Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Juri Tomak, Adrian Liermann, and Sergei Gorlatch
University of Muenster, Germany

Performance Evaluation of a Legacy Real-Time
System: An Improved RAST Approach

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 2

Introduction
Juri Tomak

▪ Dual affiliation:

▪ Ph.D. student | University of Muenster, Germany

▪ Team leader / Software Engineer | GS electronic GmbH, Germany

▪ Today’s agenda:

▪ Why is evaluating the performance of a legacy, production system challenging?

▪ What is the RAST (Regression Analysis, Simulation, and load Testing) toolset?

▪ What is improved compared to our initial, proof-of-concept implementation?

▪ Our experimental results using our RAST toolset for the particular use case of
an industrial alarm system.

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Network

3

Problem: Performance Evaluation of a Legacy Production System
Distributed Software System running on a number of virtual machines in production

Client
Request

Response

• Goal: Evaluate real-time requirements
regarding the response time1.

Production Computing Centre

VM

VM

Virtual Machine (VM)

System Under Evaluation (SUE)

VM

VM

Other software component

Database

1 Response time is the time it takes between sending a request and receiving its
response. It is the sum of the SUE’s processing time and network latency.

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 4

Properties of our Class of Systems
Our Example: Commercial Alarm System

▪ Distributed

▪ Database-centric

▪ Runs in virtual machines

▪ Large (> 1.5 Million Lines of Code)

▪ Legacy

▪ Real-Time Requirements

▪ Mission-critical

With our work, we address the following challenges that exist in systems with these properties.

Production Computing Centre

VM

VM

Virtual Machine (VM)

SUE

VM

VM

…

Database

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 5

Challenges in our Class of Systems

Disrupting regular
operation is not allowed

Bugs Active Development

CHALLENGES

No Documentation

Real-Time Requirements No APM Tool No Test Environment

Resource-Sharing
Environment

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 6

Challenges that prevent traditional load testing

Disrupting regular
operation is not allowed

CHALLENGES

Real-Time Requirements

▪ Load testing is not feasible: it disrupts regular operation by consuming
computing resources and possibly changing the contents of the database.

▪ Load testing in a test environment is not applicable: test environment has less
computing power than the production environment [1].

No Test Environment

[1] Jin 2007

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 7

Challenges that prevent traditional performance modeling

CHALLENGES

Resource-Sharing
Environment

▪ Resource usage of programs that run in parallel to the
System Under Evaluation (SUE) affects performance
evaluation results (Noisy Neighbor) [1], [2].

▪ Therefore, it is necessary to model the whole system,
even if only part of it is subject to evaluation.

[1] Jin 2007
[2] Sharma 2016

Production Computing Centre

VM

VM

Virtual Machine (VM)

SUE

VM

VM

…

Database

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 8

Challenges that prevent traditional performance modeling

Bugs Active Development

CHALLENGES

▪ Performance modeling is very difficult: existing bugs, continuous development,
and the lack of documentation will likely make the model not represent the
system well enough, especially as time passes [3].

No Documentation

[3] Tomak 2021

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 9

Related Work

CHALLENGES

No APM Tool

▪ Several similar approaches use regression analysis to build a predictive model of the target
system. They collect low-level metrics, like resource consumption and service demand, using
Application Performance Monitoring (APM) tools [4], [5], [6], [7].

▪ In our class of systems, we have no such tools and it is not possible to integrate them.

[4]: Okanovi ć 2012
[5]: Grohmann 2019
[6]: Courageux-Sudan 2021
[7]: Aichernig 2019

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 10

Challenges in our Class of Systems

Disrupting regular
operation is not allowed

Bugs Active Development

CHALLENGES

No Documentation

Real-Time Requirements No APM Tool No Test Environment

Resource-Sharing
Environment

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 11

Our Approach to Performance Evaluation

▪ Regression Analysis, Simulation, and load Testing
(RAST).

▪ RAST has similarities with previous work in using
regression analysis to create a predictive model for
processing time.

▪ The combination of regression analysis, simulation and
load testing results in features that help us in addressing
our challenges.

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 12

Using the Available Log Files

1) RAST uses the available request / access log files of the
production system as input for regression analysis.

Challenges addressed:
➡ no APM tool,
➡ no documentation,
➡ resource-sharing environment,
➡ disrupting regular operation is not allowed.

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 13

Finding the Optimal Predictive Model

2) RAST automatically finds the optimal predictive model
for the target system based on the provided log files by
choosing the best-performing regression algorithm via
cross-validation of common regression algorithms [8],
such as: Linear, Elastic net, and Decision tree
regression.

Challenges addressed:
➡ bugs,
➡ active development.

[8] Scikit-learn Development Team

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 14

Simulating the System

3) RAST simulates the system as a server software that
receives the same requests as the real legacy software
and sends valid responses.

Challenges addressed:
➡ no test environment,
➡ disrupting regular operation is not allowed.

Extra:
➡ existing load testing tools.

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 15

Load Testing with Production Workload

4) RAST uses load testing to submit the same workload to
the simulation that the production system is processing.

Challenges addressed:
➡ real-time requirements.

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Regression Analysis, Simulation and load Testing

RAST

16

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

① The Production System provides log files to Pipelines A
and B with information regarding the requests the system
has received and processed.

② Pipeline A creates the predictive model and request
type mapping.

• Predictive model: a regression algorithm and its
parameters.

• Request type mapping: transforms textual request
types into numerical values.

17

RAST Components

SUE OtherDatabase

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

③ Pipeline B creates the request types list and the
workload pattern.

• Request types list: all requests of the whole
production system.

• Workload pattern: the number and types of requests
the system processed in a given time interval, e.g.,
the number of requests per hour.

18

RAST Components

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

④ The Simulator is a server software that processes all
requests that the production system accepts.

• Request type verification and transformation.

• Processing time simulation.

⑤ The Load Tester generates a synthetic workload and
measures the response times of the Simulator.

19

RAST Components

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

⑥ Requirements Checker verifies if the measured
response times fit within the requirements and reports
the result to the Load Tester.

20

RAST Components

Details of our implementation are given in our paper.

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log-Transformer
(LT)

Predictive
Model

Request Type
Mapping

Predictive-Model-Creator
(PMC)

Simulator

Log
Files

Training Data
Database

Default
Hyperparameters

Global
Outlier Detection

Regression
Analysis

Automatic
Hyperparameter

Optimization

Zero Removal

Request
Outlier Detection

Configuration File

OD = Request
ZR = True
HP = Default
Enc = Ordinal

Ordinal
Encoding

Target
Encoding

▪ Compared to the initial version, the Predictive-Model-
Creator component in Pipeline A was enhanced:

▪ Request Outlier Detection,

21

RAST Components
Pipeline A

Pipeline A

Requests of Type T
x with 10 ms
y with 12 ms

Requests of Type M
a with 100 ms
b with 1000 ms

Global Outlier DetectionRequest Outlier Detection

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log-Transformer
(LT)

Predictive
Model

Request Type
Mapping

Predictive-Model-Creator
(PMC)

Simulator

Log
Files

Training Data
Database

Default
Hyperparameters

Global
Outlier Detection

Regression
Analysis

Automatic
Hyperparameter

Optimization

Zero Removal

Request
Outlier Detection

Configuration File

OD = Request
ZR = True
HP = Default
Enc = Ordinal

Ordinal
Encoding

Target
Encoding

▪ Compared to the initial version, the Predictive-Model-
Creator component in Pipeline A was enhanced:

▪ Request Outlier Detection,

▪ Zero Removal,

▪ Automatic Hyperparameter Optimization using Grid
search.

▪ Target Encoding.

22

RAST Components
Pipeline A

Pipeline A

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 23

RAST Components
Pipeline A

Request Type Processing
Time

A 15

B 4

C 8

A 9

C 3

Request Type Processing
Time

1 15

2 4

3 8

1 9

3 3

Ordinal Encoding

Request Type Processing
Time

4.8 15

0.8 4

2.2 8

4.8 9

2.2 3

Target Encoding

Example Request Type A
(15+9)/2*0.4 = 4.8

A = 1
B = 2
C = 3

Categorical / Nominal data

A < B < C is logically incorrect

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Log-Transformer
(LT)

Predictive
Model

Request Type
Mapping

Predictive-Model-Creator
(PMC)

Simulator

Log
Files

Training Data
Database

Default
Hyperparameters

Global
Outlier Detection

Regression
Analysis

Automatic
Hyperparameter

Optimization

Zero Removal

Request
Outlier Detection

Configuration File

OD = Request
ZR = True
HP = Default
Enc = Ordinal

Ordinal
Encoding

Target
Encoding

▪ Compared to the initial version, the Predictive-Model-
Creator component in Pipeline A was enhanced:

▪ Request Outlier Detection,

▪ Zero Removal,

▪ Automatic Hyperparameter Optimization using Grid
search.

▪ Target Encoding.

▪ Configuration File

24

RAST Components
Pipeline A

Pipeline A

➡Different configurations will be presented in the upcoming slides

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Customer's�home

Alarm�Receiving�Centre
(ARC)

Alarm�Receiving�SoftZare
(ARS)

Emergenc\�and�Service�control�Centre
(ESC)

Alarm�Device�(AD)

Risk�Management�SoftZare
(RMS)

Customer Police

ESC-Emplo\eeAlarm System

Case Study

25

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Customer's�home

Alarm�Receiving�Centre
(ARC)

Alarm�Receiving�SoftZare
(ARS)

Emergenc\�and�Service�control�Centre
(ESC)

Alarm�Device�(AD)

Risk�Management�SoftZare
(RMS)

Customer Police

ESC-Emplo\ee

26

Alarm System of GS electronic

1. Alarm is triggered

2. Alarm message is generated

3. send to the ARC

4. and forwarded to the ESC

https://www.gselectronic.com

Details of the system are given in our paper.

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

▪ System Under Evaluation = Alarm Receiving Software

▪ Real-time requirements for the response time
of an alarm receiving software are defined in the
European standard EN 50136 [9]:

27

Real-Time Requirements of an Alarm Receiving Software

mean(tresponse) < 10 sec

max(tresponse) < 30 sec

tresponse

[9] EN 50136-1:2012-08 2012

Alarm Receiving Centre
(ARC)

Alarm Receiving Software
(ARS)

tresponse

Alarm messageAlarm device
(AD) Acknowledgement

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Our Goal

▪ find the current system’s saturation point, i.e., how many Alarm Devices (ADs)
the system can simultaneously handle at maximum.

▪ company’s question: can the system handle 25.000 ADs?

28

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

① Collect log files and feed them into the
pipelines ②, ③ to create the predictive
model, the request type mapping, request
type list, and the workload pattern.

Log
Files

Log
Files

Production System

Simulator

Request Type
Mapping

Predictive
Model

Pipeline
A

Request Types
List

Request Types
List

Workload Pattern

Pipeline
B

Request Measured
Response Times

Load Tester

Response

Requirements
Checker

Preparation Phase

29

Workflow using RAST

Experimental Phase

Use the data created by the pipelines to
run the Simulator ④ and repeatedly
execute the Load Tester ⑤ with a
continuously increasing workload until the
Requirements Checker ⑥ reports a
violation of real-time requirements.

ARS OtherDatabase

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

▪ Giving RAST 180 log files of our particular
Alarm System from 30 distinct days collected
over 13 months yields a Training Database
with around 20 million records.

▪ We determine the influence on the R² score
of each individual RAST configuration:

▪ Request Outlier Detection (ROD) or Global
Outlier Detection (GOD)

▪ Zero Removal (ZR)

▪ Ordinal Encoding (CMD O) or Target
Encoding (CMD T) of Request Type

▪ Default or Optimized hyperparameters

▪ Goal: Find the RAST configuration that yields
the highest R² score.

30

Training the Optimal Predictive Model

Training Database Record
Timestamp No. Parallel

Requests at begin
(PR 1 N)

No. Parallel
Requests finished

(PR 2 N)

Request
Type
(CMD)

Processing
Time

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Training the Optimal Predictive Model
Influence of Outlier Detection Method and Zero Removal (ZR)

▪ Zero Removal has no effect when used with Global Outlier Detection (GOD)

▪ Request Outlier Detection (ROD) causes an increase of around 0.2 for all
estimators except Lasso Regression.

▪ Zero Removal provides a slight improvement in combination with ROD

▪ Likely due to our specific dataset

31

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Training the Optimal Predictive Model
Ordinal Encoding vs. Target Encoding

▪ Target Encoding

▪ Improves Ridge Regression by 0.031

▪ Degrade DecisionTree Regression by 0.004

▪ Does not influence Lasso and ElasticNet Regression

32

Ordinal Encoding

Target Encoding

R² Score

0.761

-0.000

0.264

0.814

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Training the Optimal Predictive Model
Default vs. Automatic Hyperparameter Optimization

▪ Significant improvement for ElasticNet and Lasso Regression
with an improvement of 0.484 for ElasticNet and 0.676 for
Lasso Regression for both encodings

▪ No influence for Ridge Regression

▪ The DecisionTree Regression slightly improved by 0.006 for
ordinal encoding and 0.001 for target encoding.

33

CMD O CMD T

0.761 0.792

-0.000 -0.000

0.264 0.264

0.814 0.810

Default Hyperparameters

Optimized Hyperparameters

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Training the Optimal Predictive Model
Summary

▪ Best predictive model before optimization: DecisionTree Regression with an
R^2 score of 0.626. => Baseline model

▪ Best predictive model after optimization: DecisionTree Regression with an R²
score of 0.821 (31% increase). => Optimal model

▪ Observations:

▪ Request Outlier Detection provides the biggest increase for Ridge and
DecisionTree Regression => Use Request Outlier Detection.

▪ Ordinal Encoding has a detrimental effect on Ridge Regression, but not on
the other estimators => Use Target Encoding.

▪ Default hyperparameters of Lasso and ElasticNet Regression are effectively
useless => Use Automatic hyperparameter optimization.

34

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Experimental Setup

▪ Virtual Machine (VM) on an HP Proliant dl380 G7 server
with two Intel Xeon X5690 processors with 3.46 GHz.

▪ Eight virtual CPU (vCPU) cores with 16 GB of RAM.

▪ Mininet [11] environment to simulate network latency.

▪ Within this environment, the Simulator, the Load
Tester, and the Requirements Checker are
automatically launched.

▪ For consistent comparison, we perform our experiment
twice; with the baseline predictive model (PM1) and
the optimal model (PM2).

35

Experimental Results
[11] Keti 2015

PM1

PM2

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 36

Experimental Results

PM1 PM21240 1340

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 37

Experimental Results

AD Avg. Response
Time

Max. Response
Time

1200 0.1388 21.434
1200 0.1084 10.725
1200 0.1824 27.885
1200 0.1697 20.422
1220 0.1112 6.675
1220 0.1557 29.053
1220 0.2064 33.650
1220 0.1089 7.878
1240 0.1550 30.108
1240 0.1418 16.087
1240 0.1822 34.908
1260 0.1355 11.054
1280 0.1174 10.271
1300 0.1277 11.252
1320 0.1139 8.580
1340 0.1897 30.379

PM2

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System 38

Experimental Results

▪ Conclusion: The Alarm System can at least handle
1,340 Alarm Devices while complying with the
real-time requirements of:

▪ average response time below 10 sec,

▪ maximum response time below 30 sec.

▪ Answer to the company’s question: No, the Alarm
System cannot handle 25,000 Alarm Devices.

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Conclusion: Advantages of our Approach

▪ RAST is an toolset for evaluating the response time of distributed legacy
software that runs in production.

▪ Compared with related work it offers the following advantages:

▪ does not require APM tools,

▪ does not change the existing system or disrupt its regular operation.

▪ With the improvements introduced in this paper, RAST provides common
methods to fine-tune the predictive model training process.

▪ It allowed us to to increase the R² score of our previously best model by
31%.

▪ We successfully used our RAST toolset in an industrial case study.

39

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Conclusion: Limitations of our Implementation

▪ In our case study, it was not possible to consider the whole system in our model
because background programs do not produce log files.

▪ The current model performs predictions based on only three predictor
variables.

40

Juri Tomak, Adrian Liermann, and Sergei Gorlatch| Performance Evaluation of a Legacy Real-Time System

Conclusion: Future Work

▪ Improve the predictive model by extracting additional features from the
existing log files, e.g., the specific request types that are being processed in
parallel.

▪ Implement RAST for different (open-source) software systems, e.g., TeaStore.

▪ https://github.com/jtpgames/Locust_Scripts

41

https://github.com/jtpgames/Locust_Scripts

Name| Presentation Short Title (optional)

Juri Tomak
jtomak@uni-muenster.de

University of Muenster & GS electronic GmbH, Germany

Thank you for your attention, questions?

mailto:jtomak@uni-muenster.de

