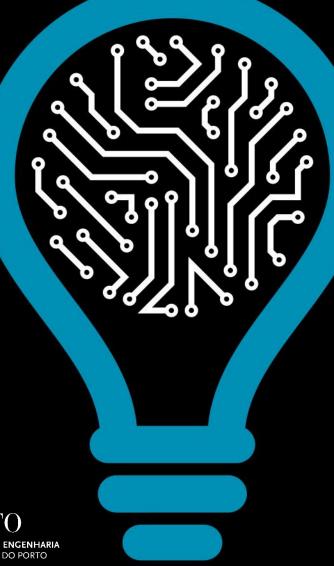
RateRL: A Framework for Developing RL-Based Rate Adaptation Algorithms in ns-3

EAI SIMUTools 2023 - 15th EAI International Conference on Simulation Tools and Techniques

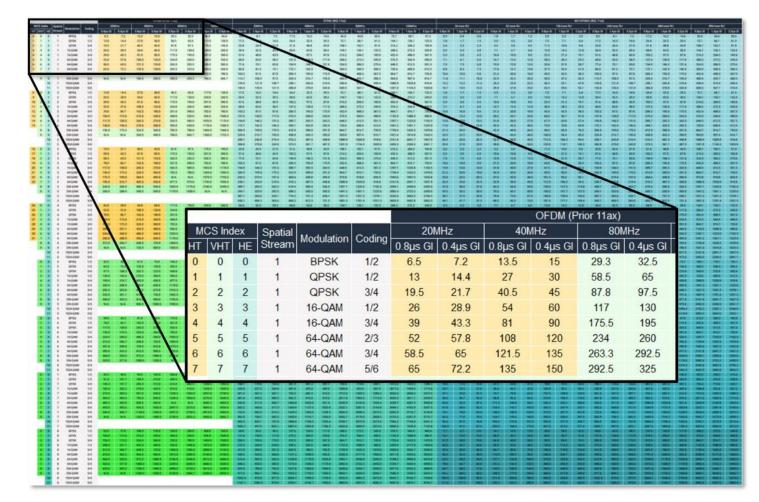

Rúben Queirós (ruben.m.queiros@inesctec.pt) PhD Student, FEUP Research Assistant, Wireless Networks, CTM, INESC TEC

14-15 December 2023

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

Presentation Overview

- Introduction: Context, Motivation and Contributions
- **Rate** Reinforcement Learning (**RL**) Framework
- Practical Use Case of the RateRL Framework
- **Conclusions** and Future Work



Introduction

Introduction – Context

- Wi-Fi has introduced new configuration parameters
- Rate Adaptation (RA)
 is becoming extremely
 challenging

Source: https://mcsindex.com/

U. PORT FEUP FACULDADE DE

Introduction – Motivation

- Most ns-3 available RA algorithms are obsolete
 - (AARF, AARFCD, AMRR, APARF, ARF, CARA, Ideal, Minstrel, Minstrel-HT, Once, PARF, RRAA, RRPAA, ThompsonSampling)
- Reinforcement Learning (RL) and other Machine Learning techniques are being used to improve the network QoS
- Recent RA algorithms are ML-based
 - Insufficient implementation details
 - Source code or training dataset is usually not available

This problems emphasize the need for a systematic approach to integrate RL-based RA algorithms into Wireless Networks

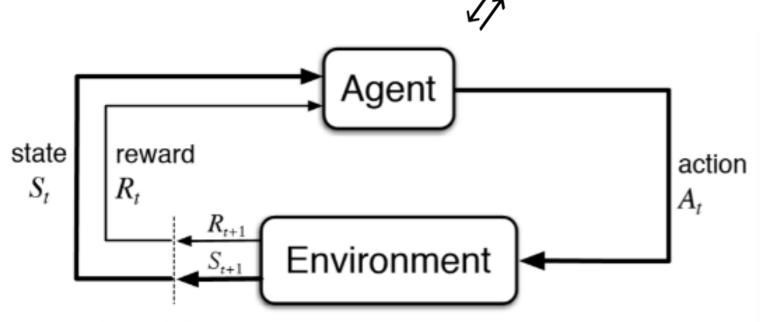
U. PORTO EUP FACULDADE DE ENCENHAI UNIVERSIDADE DO PORTO

Introduction – Contributions

RateRL – A framework to support the development of RL-based RA algorithms

Pratical use case with a SotA algorithm Uses known RL libraries: TF-Agents and OpenAl Gym

Code and ns-3 scripts are publicly available

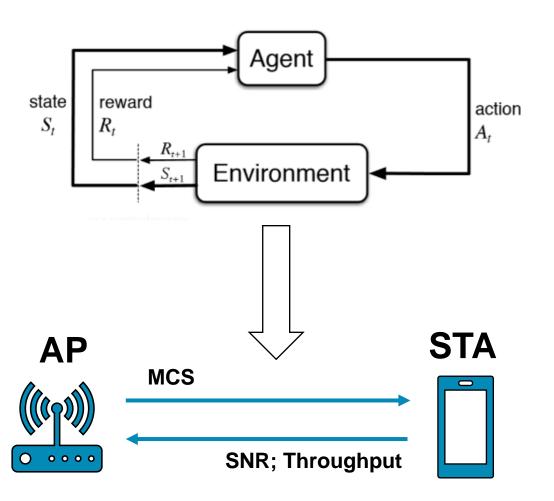


Reinforcement Learning

- Action → Applied on Environment to produce a new State
- State → Defines the state of the Environment.
- **Reward** → Evaluates previous **Action/State**.
- Policy → Holds the "suggested" Actions for every possible State

RateRL Architecture

- Training New policy, balancing exploratory and exploiting decisions
- Evaluation Loads a Trained policy to exploit training results



Practical Use Case

Data-driven Algorithm for Rate Adaptation (DARA)[1]

- Agent → Framework in node (AP)
- Environment → Wireless Channel
- Action \rightarrow MCS (0 to 7)
- **State** → SNR (Avg received ACKs)
- **Reward** → Success Ratio and Throughput

$$reward = \frac{MCS_n}{MCS_7} \times FSR, n \in [0, 1, ..., 7]$$

Training Scenario and Hyperparameter tuning

Training Scenario

- 2 Stations, 1 static
- Other station "walks" away at constant speed to stimulate SNR changes

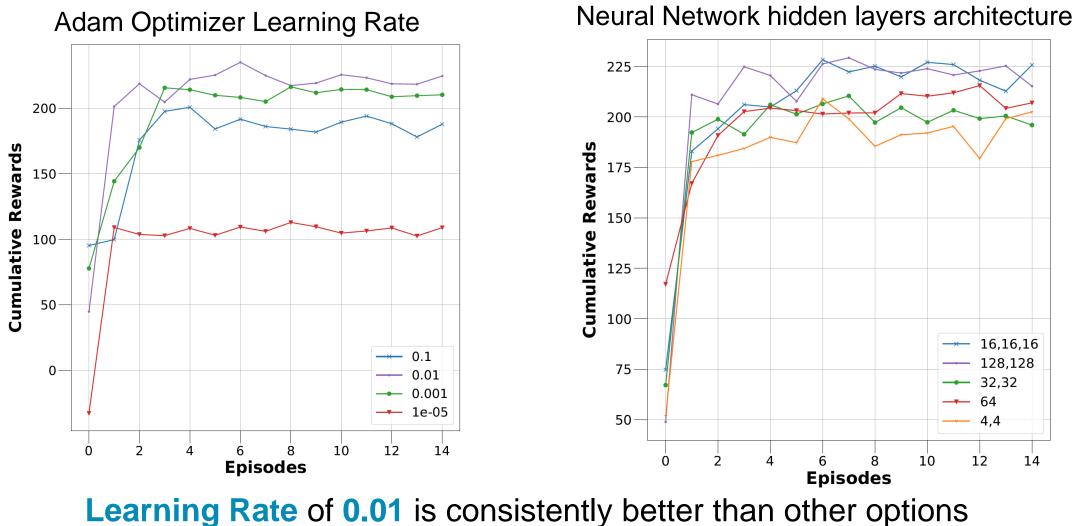
Rationale

- Agent observes the whole range of possible states
- Through trial and error it learns what MCS is best for each SNR intervals

• Hyperparameter Tuning:

- Learning Rate
- Hidden Layer Architecture

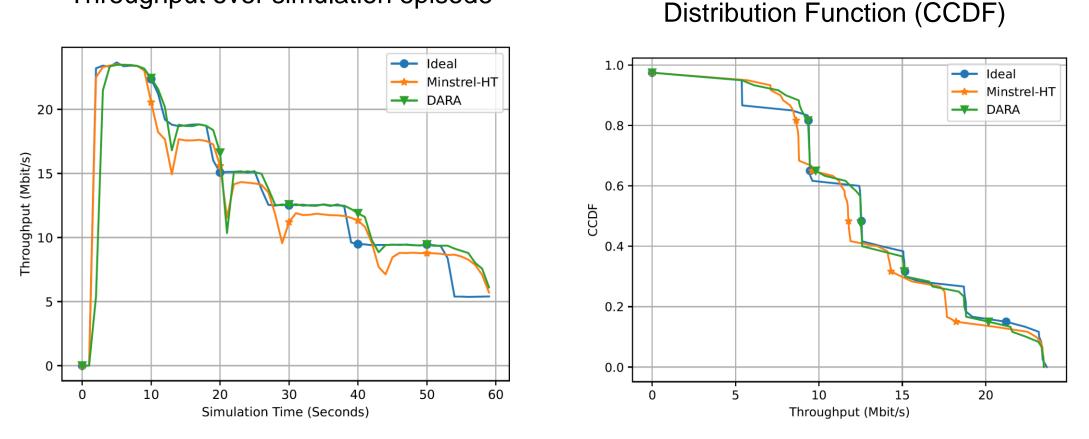
ns-3 simulation configurations


Configuration Parameter Value	
Wi-Fi Standard	IEEE 802.11n
Propagation Delay Model	Constant Speed
Propagation Loss Model	Friis
Frequency	$5180 \mathrm{~MHz}$
Channel Bandwidth	20 MHz
Transmission Power	20 dBm
Wi-Fi MAC	Ad-hoc
Traffic	UDP, generated above link capacity
Packet Size	1400 Bytes of UDP Payload

Reinforcement Learning Configurations

Parameter	Value
Observation Space	One-dimensional scaled float $(0.0-1.0)$
Action Space	One-dimensional integer $(0-7)$
Optimiser	Adam
Loss Function	Mean Square Error
Epsilon Greedy	Fixed at 0.1
Discount Factor	Fixed at 0.5
Replay buffer	size of 10^6
Batch Size	64

EU-


Hyperparameter Tuning Results

All options with similar performance $\rightarrow 16, 16, 16$ fully connected units

Final Simulation Results

Throughput over simulation episode

Throughput Complementary Cumulative

We successfully implement train and evaluate DARA using RateRL Achieving similar throughput when compared with Minstrel-HT and Ideal

Conclusions

U. PORT FEUP FACULDADE DE

Conclusions and Future Work

- We presented **RateRL**, a framework for RL-based Rate Adaptation Algorithms
 - Demonstrated its usage with DARA, a SotA RL-based RA algorithm
 - Framework is open source and publicly available
- Future Work...
 - Migrate to ns3-ai to support other popular ML frameworks
 - Extend RateRL to consider other RL Algorithms such as Deep Deterministic Policy Gradient (DDPG) and Proximal Policy Optimization (PPO)

Thank you!

Questions?

Acknowledgements:

This work is financed by National Funds through the Portuguese funding agency, FCT -Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020. The first author thanks the funding from FCT, Portugal under the PhD grant 2022.10093.BD.

EAI SIMUTools 2023 - 15th EAI International Conference on Simulation Tools and Techniques

17

Rúben Queirós – ruben.m.queiros@inesctec.pt

T +351 222 094 000 R DR. ROBERTO FRIAS info@inesctec.pt www.inesctec.pt 4200-465 PORTO

INESC TEC

f in y d 🕑

PORTUGAL