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Presentation Overview

• Introduction: Context, Motivation and Contributions

• Rate Reinforcement Learning (RL) Framework

• Practical Use Case of the RateRL Framework

• Conclusions and Future Work
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Introduction – Context

• Wi-Fi has introduced
new configuration
parameters

• Rate Adaptation (RA) 
is becoming extremely
challenging

Source: https://mcsindex.com/

https://mcsindex.com/
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Introduction – Motivation

• Most ns-3 available RA algorithms are obsolete

• (AARF, AARFCD, AMRR, APARF, ARF, CARA, Ideal, Minstrel, Minstrel-HT, Onoe, PARF,
RRAA, RRPAA, ThompsonSampling)

• Reinforcement Learning (RL) and other Machine Learning techniques are 
being used to improve the network QoS

• Recent RA algorithms are ML-based

• Insufficient implementation details

• Source code or training dataset is usually not available

This problems emphasize the need for a systematic approach to 
integrate RL-based RA algorithms into Wireless Networks
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Introduction – Contributions

RateRL – A framework to support the development of 
RL-based RA algorithms

Pratical use 
case with a 

SotA  
algorithm

Code and 
ns-3 scripts 
are publicly 
available

Uses known 
RL libraries: 
TF-Agents 

and OpenAI 
Gym



RateRL Framework
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Reinforcement Learning

Policy

• Action → Applied on Environment to produce a 
new State

• State → Defines the state of the Environment. 

• Reward → Evaluates previous Action/State.

• Policy → Holds the “suggested” Actions for every
possible State
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RateRL Architecture 

• Training – New policy, balancing exploratory and exploiting decisions

• Evaluation – Loads a Trained policy to exploit training results



Practical Use Case
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Data-driven Algorithm for Rate Adaptation (DARA)[1]

• Agent → Framework in node (AP)

• Environment → Wireless Channel

• Action → MCS (0 to 7)

• State → SNR (Avg received ACKs)

• Reward → Success Ratio and Throughput 

𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑀𝐶𝑆𝑛
𝑀𝐶𝑆7

× 𝐹𝑆𝑅, 𝑛 ∈ [0,1,… , 7] MCS

SNR; Throughput

AP STA

[1] Queirós, Rúben, et al. "Wi-Fi Rate Adaptation using a Simple Deep Reinforcement Learning Approach." 2022 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2022
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Training Scenario and Hyperparameter tuning

• Training Scenario

• 2 Stations, 1 static

• Other station “walks” away at 
constant speed to stimulate SNR 
changes

• Rationale

• Agent observes the whole range 
of possible states 

• Through trial and error it learns 
what MCS is best for each SNR 
intervals

• Hyperparameter Tuning:

• Learning Rate

• Hidden Layer Architecture

ns-3 simulation configurations

Reinforcement Learning Configurations
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Hyperparameter Tuning Results

Adam Optimizer Learning Rate

Learning Rate of 0.01 is consistently better than other options

All options with similar performance → 16,16,16 fully connected units

Neural Network hidden layers architecture
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Final Simulation Results

Throughput over simulation episode

We successfully implement train and evaluate DARA using RateRL

Achieving similar throughput when compared with Minstrel-HT and Ideal

Throughput Complementary Cumulative 

Distribution Function (CCDF)



Conclusions
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• We presented RateRL, a framework for RL-based Rate Adaptation Algorithms

• Demonstrated its usage with DARA, a SotA RL-based RA algorithm

• Framework is open source and publicly available

• Future Work…

• Migrate to ns3-ai to support other popular ML frameworks

• Extend RateRL to consider other RL Algorithms such as Deep Deterministic Policy Gradient 
(DDPG) and Proximal Policy Optimization (PPO)

Conclusions and Future Work
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Thank you!
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