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1. Introduction

Scope
Contributions



Scope
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¢ Unmanned Aerial Vehicles (UAVS) as o el

nodes of the Aerial network
¢ Flying Access Points (FAPS)
¢ Flying Gateways (FGWS5s)

¢ Positioning of the FGW as a core
element of the aerial networks




Contributions

¢ The Rate Adaptation aware RL-based Flying Gateway Positioning (RARL)
algorithm enables the FGW to find a final position, considering the
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¢ Effect of realistic Rate Adaptation (RA) algorithms
¢ Impact of the Backhaul network configuration

¢ Continuous evaluation of the network state

¢ The algorithm is meant to be trained in the simulation environment of ns-
3 and posteriorly the model should be used by FGWs through transfer
learning

ns-3

NETWORK SIMULATOR
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2. State-of-the-Art and Relevant Concepts

State-of-the-Art

Rate Adaptation
Reinforcement Learning
ns-3 Simulation Environment



State-of-the-Art
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¢ State-of-the-art solutions for drone positioning in aerial networks
overlooks the impact of Rate Adaptation algorithms

¢ Use of fixed Modulation and Coding Schemes

¢ Use of ideal RA algorithms

¢ Deep Reinforcement Learning (DRL) emerges as a promising approach
for UAV positioning

¢ Supports choice of the Deep Q-Learning approach in the implementation of the RARL
algorithm




Rate Adaptation
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¢ RAalgorithms are a core feature of wireless systems

¢ Techniqgues employed to enhance the reliability and robustness of wireless
transmissions

¢ Data rate control methods find a trade-off between the transmission rate and the network
performance

¢ In this study, the Minstrel-High Throughput (HT) algorithm was analysed




Reinforcement Learning - Overview

¢ Through the feedback obtained to the actions it takes, the agent learns how
to interact with the environment
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¢ The rewards come as incentive or punishment, measuring how the actions
Impact the environment towards the defined goal
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ns-3 Simulation Environment
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® ns-3 s a discrete-event network simulator

¢ ns3-gym integrates both OpenAl Gym and
ns-3 to allow the development of RL-based
algorithms in networking research

.|Il|n8'3

NETWORK SIMULATOR
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3. Rate Adaptation aware RL-based
Flylng Gateway Positioning Algorithm

Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm
Design

Scenarios Studied
Algorithm Design for Asymmetric Links and Moving FAP Scenarios
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Rate Adaptation aware RL-based Flying
Gateway Positioning Algorithm Design
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¢ The algorithm was formulated to find a final position, given the current
network state and nodes’ positions
¢ Maximizes the throughput in the FGW and the FAP
¢ Minimizes imbalances between links

® For each scenario studied, the RARL algorithm was trained independently,
under diverse conditions

¢ The simulations were carried with

¢ the Wi-fi Standard IEEE 802.11n
Friis Propagation Loss Model
Minstrel-HT as RA algorithm
Downstream traffic
Saturated links
Independent Wi-Fi channels for each link
UDP traffic
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Scenarios Studied
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o Algorithm Structure for Asymmetric Links and
[ . .
Q Moving FAP Scenarlos
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A ¢ Throughputs in FGW
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Environment -
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4. Performance Evaluation

Asymmetric Links Scenario
Moving FAP Scenario
Two FAPs Scenario
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Asymmetric Links Scenario

Time: 0 Sim seconds
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¢ Final Position: (175, 525) < (175, 550)

¢ Evidence of the detection of imbalance of transmission power

¢ Throughput in both links converge to around 17 Mbit/s




Asymmetric Links Scenario — RARL vs Baseline
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Baseline defined as optimal trajectory from the initial position to the position that
ensures the SNR in both links were the same

RARL algorithm achieves faster convergence
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Moving FAP Scenario

Time: 0 Sim seconds
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¢ The FGW moves mainly in the horizontal direction - maintains the balance
of the throughput in the links

¢ Throughput in both links converge to around 17 Mbit/s



O RARL vs Baseline
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¢ Baseline defined as central position between Backhaul and FAP

® RARL algorithm outperforms baseline solution, achieving the throughput
convergence
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5. Conclusions

Conclusions
Future Work
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Conclusions

¢ The RARL algorithm enables the FGW to find the final position that
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¢ Maximizes the throughput in both links

¢ Minimizes imbalances

¢ The comparisons of the RARL algorithm with the baseline validate the
implementation

¢ Supports an RA aware positioning algorithm for real-world deployments

® Need to overcome interference caused by the underlying RA
® Fluctuations when transitioning data rates

¢ Poor performance when an improvement of channel quality is observed




Future Work

¢ Consider a more realistic simulation
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¢ Stochastic propagation models that account for fading effects (e.g., Rician
Propagation Model)

® Non-ideal directional antennas

¢ Test more complex scenarios, adding
¢ More non-stationary FAPs

¢ Varying traffic demands

¢ The trajectory should be improved
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