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1. Introduction
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• Scope

• Contributions
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Scope

• Aerial networks’ diverse range of 

applications 

• Unmanned Aerial Vehicles (UAVs) as            

nodes of the Aerial network

• Flying Access Points (FAPs)

• Flying Gateways (FGWs)

• Positioning of the FGW as a core 

element of the aerial networks
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Contributions

• The Rate Adaptation aware RL-based Flying Gateway Positioning (RARL)

algorithm enables the FGW to find a final position, considering the

• Effect of realistic Rate Adaptation (RA) algorithms 

• Impact of the Backhaul network configuration

• Continuous evaluation of the network state 

• The algorithm is meant to be trained in the simulation environment of ns-

3 and posteriorly the model should be used by FGWs through transfer 

learning



2. State-of-the-Art and Relevant Concepts 
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• State-of-the-Art

• Rate Adaptation

• Reinforcement Learning 

• ns-3 Simulation Environment
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State-of-the-Art

• State-of-the-art solutions for drone positioning in aerial networks 

overlooks the impact of Rate Adaptation algorithms

• Use of fixed Modulation and Coding Schemes 

• Use of ideal RA algorithms

• Deep Reinforcement Learning (DRL) emerges as a promising approach 

for UAV positioning

• Supports choice of the Deep Q-Learning approach in the implementation of the RARL

algorithm
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Rate Adaptation

• RA algorithms are a core feature of wireless systems

• Techniques employed to enhance the reliability and robustness of wireless 

transmissions

• Data rate control methods find a trade-off between the transmission rate and the network 

performance

• In this study, the Minstrel-High Throughput (HT) algorithm was analysed
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Reinforcement Learning - Overview

Actions, A
State, s

Reward, r

• Through the feedback obtained to the actions it takes, the agent learns how 

to interact with the environment 

• The rewards come as incentive or punishment, measuring how the actions 

impact the environment towards the defined goal
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ns-3 Simulation Environment

• ns-3 is a discrete-event network simulator

• ns3-gym integrates both OpenAI Gym and 

ns-3 to allow the development of RL-based 

algorithms in networking research

Gym API

ns3-gym MiddlewarePython

C++



3. Rate Adaptation aware RL-based 
Flying Gateway Positioning Algorithm
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• Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm 

Design

• Scenarios Studied

• Algorithm Design for Asymmetric Links and Moving FAP Scenarios
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Rate Adaptation aware RL-based Flying 

Gateway Positioning Algorithm Design

• The algorithm was formulated to find a final position, given the current 

network state and nodes‘ positions

• Maximizes the throughput in the FGW and the FAP

• Minimizes imbalances between links

• For each scenario studied, the RARL algorithm was trained independently, 

under diverse conditions

• The simulations were carried with
• the Wi-fi Standard IEEE 802.11n

• Friis Propagation Loss Model

• Minstrel-HT as RA algorithm

• Downstream traffic

• Saturated links

• Independent Wi-Fi channels for each link

• UDP traffic
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Scenarios Studied

Asymmetric Links Moving FAP
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Algorithm Structure for Asymmetric Links and 

Moving FAP Scenarios

FGW

Environment

𝑹𝒆𝒘𝒂𝒓𝒅 = 𝑆𝑁𝑅𝐹𝐺𝑊 + 𝑆𝑁𝑅𝐹𝐴𝑃 − 2 𝑆𝑁𝑅𝐹𝐺𝑊 − 𝑆𝑁𝑅𝐹𝐴𝑃

Observations:

• FGW’s coordinates

• Distances Backhaul-

FGW and FGW-FAP

• Throughputs in FGW 

and FAP

𝑹𝒆𝒘𝒂𝒓𝒅 *

*

Actions



4. Performance Evaluation
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• Asymmetric Links Scenario

• Moving FAP Scenario

• Two FAPs Scenario



Asymmetric Links Scenario
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• Final Position: (175, 525) (175, 550)

• Evidence of the detection of imbalance of transmission power

• Throughput in both links converge to around 17 Mbit/s
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Asymmetric Links Scenario – RARL vs Baseline

RARL Baseline

• Baseline defined as optimal trajectory from the initial position to the position that 

ensures the SNR in both links were the same

• RARL algorithm achieves faster convergence
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Moving FAP Scenario

• The FGW moves mainly in the horizontal direction → maintains the balance 

of the throughput in the links 

• Throughput in both links converge to around 17 Mbit/s
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RARL vs Baseline

RARL Baseline

• Baseline defined as central position between Backhaul and FAP

• RARL algorithm outperforms baseline solution, achieving the throughput 

convergence
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• Conclusions

• Future Work



21

Conclusions

• The RARL algorithm enables the FGW to find the final position that 

• Maximizes the throughput in both links

• Minimizes imbalances

• The comparisons of the RARL algorithm with the baseline validate the 

implementation

• Supports an RA aware positioning algorithm for real-world deployments

• Need to overcome interference caused by the underlying RA

• Fluctuations when transitioning data rates 

• Poor performance when an improvement of channel quality is observed
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Future Work

• Consider a more realistic simulation

• Stochastic propagation models that account for fading effects (e.g., Rician 

Propagation Model)

• Non-ideal directional antennas

• Test more complex scenarios, adding

• More non-stationary FAPs

• Varying traffic demands

• The trajectory should be improved



23

Thank you!
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