Rate Adaptation Aware Positioning for Flying Gateways using Reinforcement Learning

EAI SIMUTools 2023 – 14-15 December 2023

Gabriella Pantaleão, Rúben Queirós, Hélder Fontes, Rui Campos

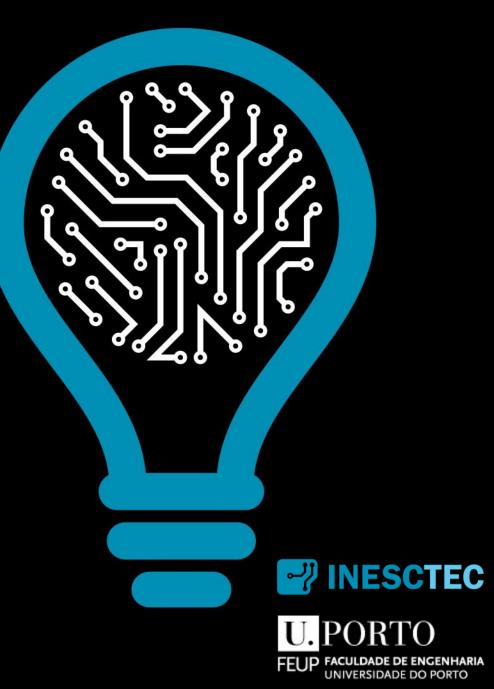


Table of Contents

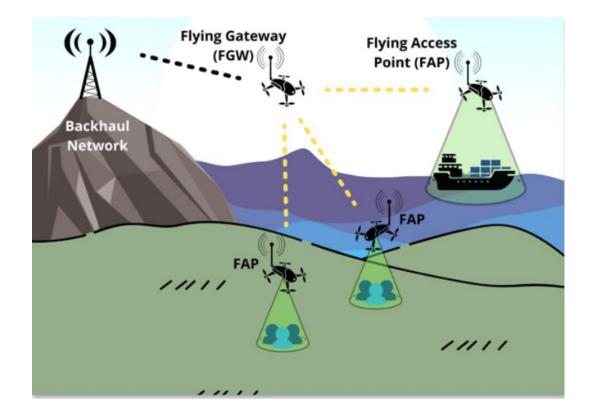
- 1. Introduction
- 2. State of the Art and Relevant Concepts
- 3. Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm
- 4. Performance Evaluation
- 5. Conclusions

1. Introduction

- Scope
- Contributions

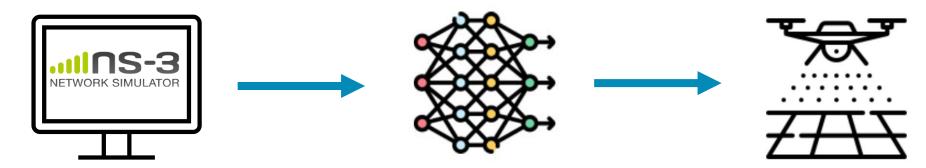
Scope

- Aerial networks' diverse range of applications
- Unmanned Aerial Vehicles (UAVs) as nodes of the Aerial network
 - Flying Access Points (FAPs)
 - Flying Gateways (FGWs)
- **Positioning of the FGW** as a core element of the aerial networks



Contributions

- The Rate Adaptation aware RL-based Flying Gateway Positioning (RARL) algorithm enables the FGW to find a final position, considering the
 - Effect of **realistic** Rate Adaptation (RA) algorithms
 - Impact of the **Backhaul** network **configuration**
 - **Continuous evaluation** of the network state
- The algorithm is meant to be trained in the simulation environment of ns-3 and posteriorly the model should be used by FGWs through transfer learning



2. State-of-the-Art and Relevant Concepts

- State-of-the-Art
- Rate Adaptation
- Reinforcement Learning
- ns-3 Simulation Environment

State-of-the-Art

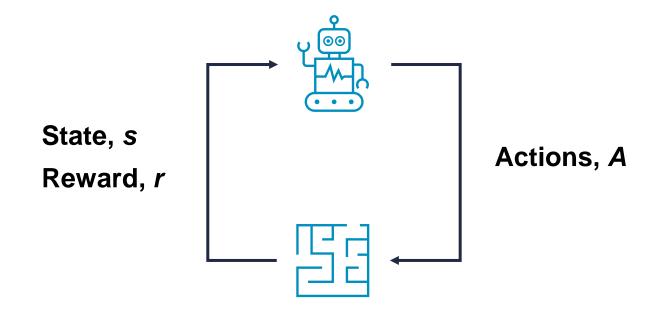
- State-of-the-art solutions for drone positioning in aerial networks overlooks the impact of Rate Adaptation algorithms
 - Use of fixed Modulation and Coding Schemes
 - Use of ideal RA algorithms
- Deep Reinforcement Learning (DRL) emerges as a promising approach for UAV positioning
 - Supports choice of the Deep Q-Learning approach in the implementation of the RARL algorithm

Rate Adaptation

- RA algorithms are a **core feature** of wireless systems
- Techniques employed to enhance the reliability and robustness of wireless transmissions
 - Data rate control methods find a trade-off between the transmission rate and the network performance
- In this study, the **Minstrel-High Throughput (HT)** algorithm was analysed

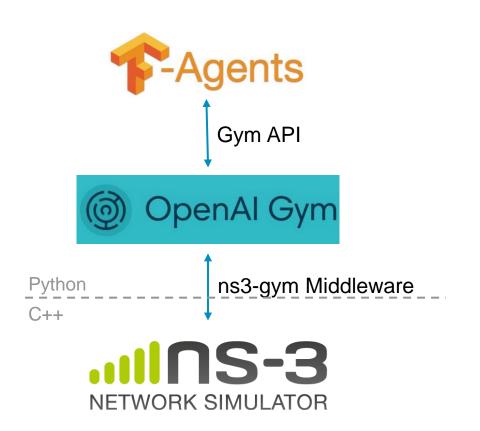
Reinforcement Learning - Overview

- Through the feedback obtained to the actions it takes, the agent learns how to interact with the environment
- The rewards come as incentive or punishment, measuring how the actions impact the environment towards the defined goal



ns-3 Simulation Environment

- ns-3 is a discrete-event network simulator
- ns3-gym integrates both OpenAI Gym and ns-3 to allow the development of RL-based algorithms in networking research



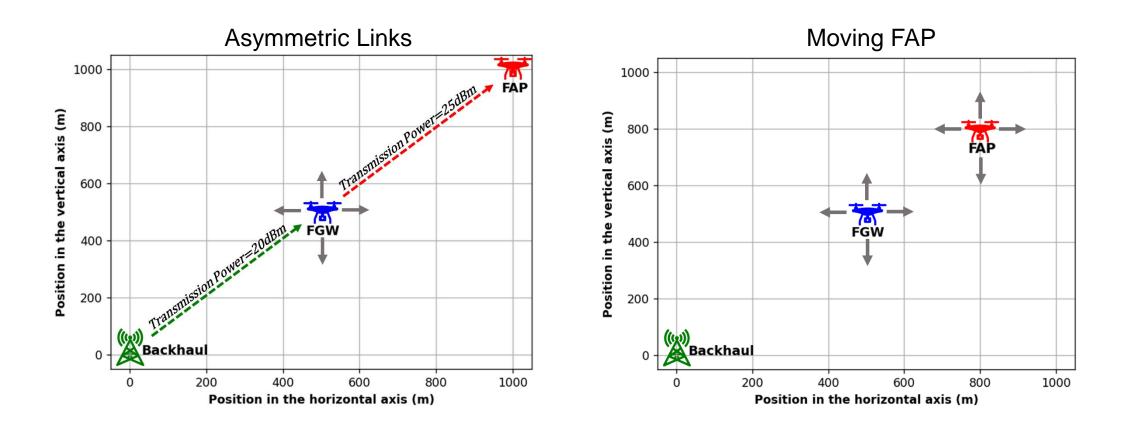
3. Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm

- Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm Design
- Scenarios Studied
- Algorithm Design for Asymmetric Links and Moving FAP Scenarios

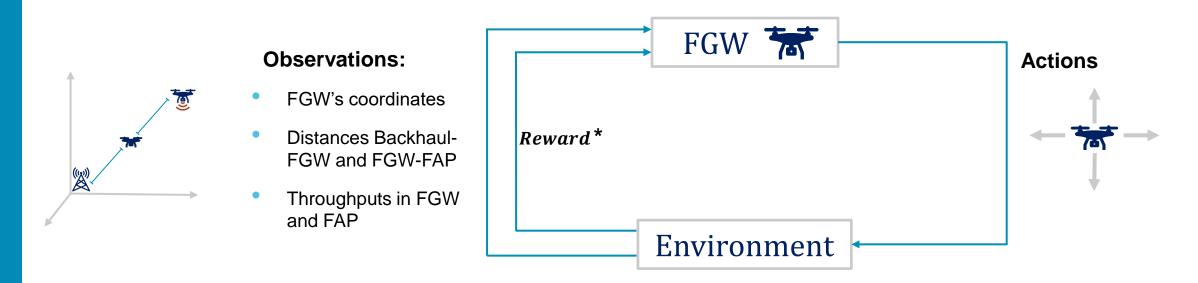
Rate Adaptation aware RL-based Flying Gateway Positioning Algorithm Design

- The algorithm was formulated to find a final position, given the current network state and nodes' positions
 - Maximizes the throughput in the FGW and the FAP
 - Minimizes imbalances between links
- For each scenario studied, the RARL algorithm was trained independently, under diverse conditions
- The simulations were carried with
 - the Wi-fi Standard IEEE 802.11n
 - Friis Propagation Loss Model
 - Minstrel-HT as RA algorithm
 - Downstream traffic
 - Saturated links
 - Independent Wi-Fi channels for each link
 - UDP traffic

Scenarios Studied



Algorithm Structure for Asymmetric Links and Moving FAP Scenarios

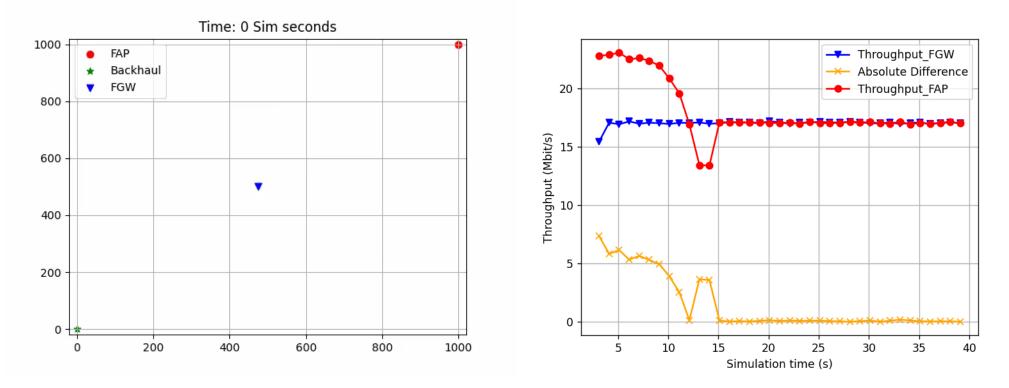


* $Reward = SNR_{FGW} + SNR_{FAP} - 2|SNR_{FGW} - SNR_{FAP}|$

4. Performance Evaluation

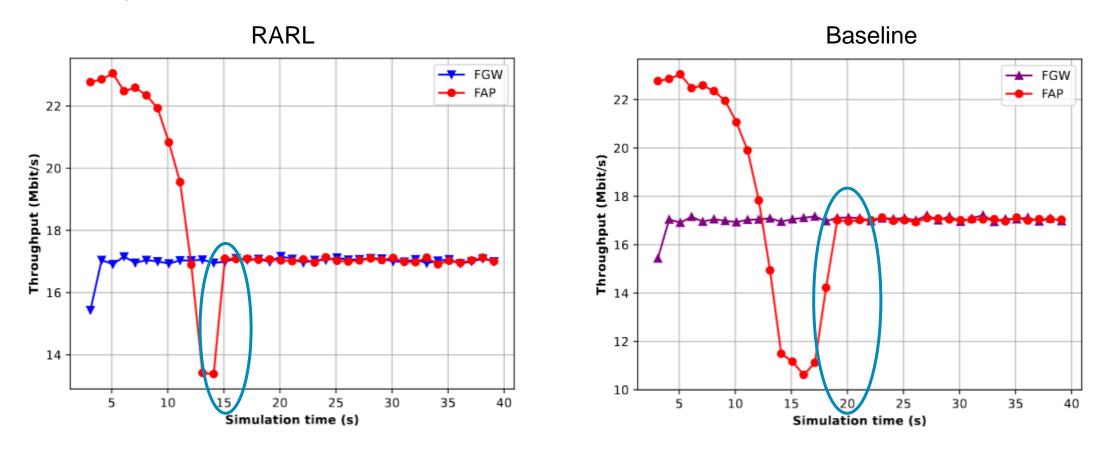
- Asymmetric Links Scenario
- Moving FAP Scenario
- Two FAPs Scenario

Asymmetric Links Scenario



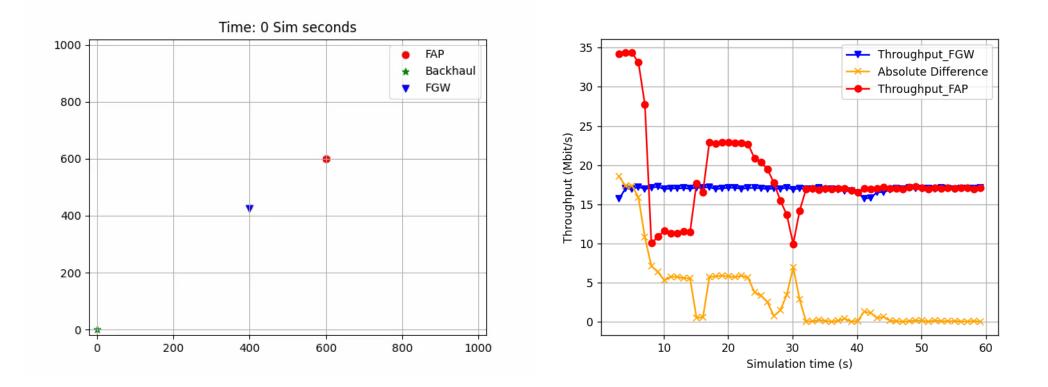
- Final Position: $(175, 525) \leftrightarrow (175, 550)$
 - Evidence of the detection of imbalance of transmission power
- Throughput in both links converge to around 17 Mbit/s

Asymmetric Links Scenario – RARL vs Baseline



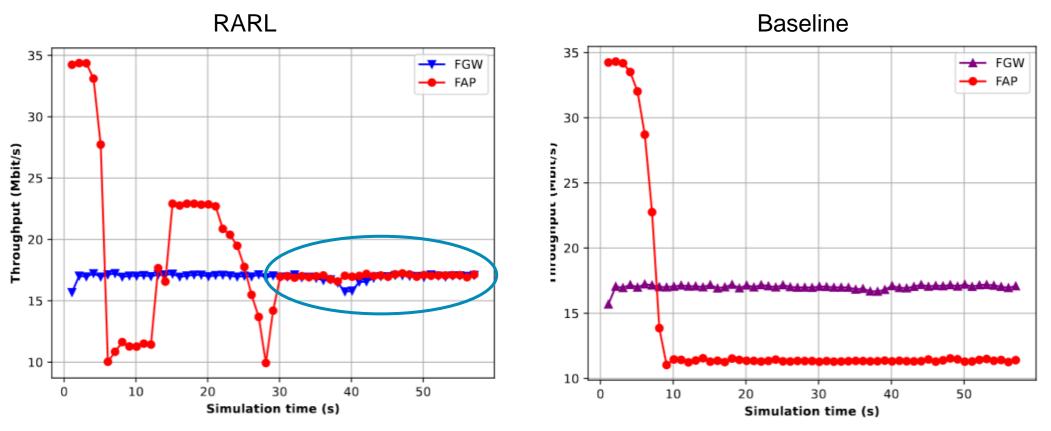
- Baseline defined as optimal trajectory from the initial position to the position that ensures the SNR in both links were the same
- RARL algorithm achieves faster convergence

Moving FAP Scenario



- The FGW moves mainly in the horizontal direction → maintains the balance of the throughput in the links
- Throughput in both links converge to around 17 Mbit/s

RARL vs Baseline



- Baseline defined as central position between Backhaul and FAP
- RARL algorithm outperforms baseline solution, achieving the throughput convergence

5. Conclusions

- Conclusions
- Future Work

Conclusions

- The RARL algorithm enables the FGW to find the final position that
 - Maximizes the throughput in both links
 - Minimizes imbalances
- The comparisons of the RARL algorithm with the baseline validate the implementation
 - Supports an RA aware positioning algorithm for real-world deployments
- Need to overcome interference caused by the underlying RA
 - Fluctuations when transitioning data rates
 - Poor performance when an improvement of channel quality is observed

Future Work

- Consider a more realistic simulation
 - Stochastic propagation models that account for fading effects (e.g., Rician Propagation Model)
 - Non-ideal directional antennas
- Test more complex scenarios, adding
 - More non-stationary FAPs
 - Varying traffic demands
- The trajectory should be improved

Thank you!