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DARA Overview

Data-driven Algorithm for Rate AdaptationDARA

100 ms
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Preliminary Experiment

• In simulation, DARA performed satisfactorily

• Implementation in a real environment (Base DARA) was not trivial

• Example of overlooking the effect of computational delays

• Average execution time of one loop was 528.8 ms!
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Goals
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Improvements

• Low-level Information Access

• Information Collection

• Information Parsing
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Low-level Information Access

• Reward information took 100 ms to update.

• Solution: Modify mac80211 Linux kernel module
• Provides up-to-date data directly from the kernel

• However, waiting time after each action is needed
• Preliminary: reduce period to 50 ms

• Final: file read assynchronously, rest of the algorithm can proceed during wait
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Information Collection

3 Alternatives

• Subprocess
• Allows use of simple but flexible bash commands

• Python
• Part of the algorithm is already in Python

• Rust
• Attempt to leverage compiled language speed
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Information Parsing

• Files contain unnecessary information, requiring parsing

• Two different scenarios:
• State file – Complex

• Reward file – Simple

• 3 Alternatives
• Subprocess

• Python

• Regex
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Information Collection Subprocess Python Rust

Average (ms) 49.637 12.805 15.107

Standard Deviation (ms) ± 4.990 ± 1.385 ± 1.546

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Collection Subprocess Python Rust

Average (ms) 49.637 12.805 15.107

Standard Deviation (ms) ± 4.990 ± 1.385 ± 1.546

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Collection and Parsing

• Fastest approaches were used to enhance 
DARA

• Biggest fault was due to Subprocess module

Average total time of each step:
• Base DARA 528.8 ms
• E-DARA 34.8 ms (≈94% decrease)
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Simulation Methodology

Measure 
Experimentally

Normal 
Distribution of 

Delays

Simulated delay 
before action

Agent Mobile Node

SNR



Introduction

Methodology and Implementation

Results

Conclusions

16



17

DARA Comparisons

Perfect

• No delays

Base

• 528.8 ms 
delays

Enhanced

• 34.8 ms 
delays

Simulation 
Trained

• 34.8 ms delays 
(exploitation 
only)
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Algorithm Average Throughput (Mbit/s) Average frames lost

Ideal 13.27 —

Minstrel-HT 12.74 —

DARA no delays 13.04 1128.5

DARA base delays 6.44 4661.8

DARA enhanced delays 13.00 1189.0

Results

• E-DARA achieves 102% higher throughput than base 
DARA

• E-DARA close to perfect version
• Computational delays severely affected performance
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Simulation Training

Simulation Training: 
• Training stage performed in perfect conditions (no 

delays)
• Exploitation still remains with delays (34.8 ms).

Average throughput of E-DARA:

• Regular:  13.47 Mbit/s
• Simulation-Training: 13.83 Mbit/s

(2.7% increase)

• May improve performance by reducing delay 
impact during training
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Conclusions

• Computational delays are underdiscussed

• Simulations should consider delays

• Impact of delays can be significant although not apparent

• Future work can be done on analyzing different metrics, scenarios 

and algorithms
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The End

Any Questions?
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