
On the Analysis of Computational
Delays in Reinforcement Learning-

based Rate Adaptation

Ricardo Trancoso, João Pinto, Rúben Queirós, Hélder Fontes, Rui Campos

EAI SIMUTools 2023
Seville, Spain

Introduction

Methodology and Implementation

Results

Conclusions

2

3

Context

Reinforcement
Learning

Rate
Adaptation

Growing
Requirements

Wi-Fi

Computational Delays
affect performance

Authors do not provide
implementational details

Possible gap in the
literature

4

Context

Raise awareness of
the execution time
problem

Sensitize

Describe methods to
reduce delays

Reduce

Create a framework
to simulate these
delays

Evaluate

5

Contributions

Introduction

Methodology and Implementation

Results

Conclusions

6

7

DARA Overview

Data-driven Algorithm for Rate AdaptationDARA

100 ms

8

Preliminary Experiment

• In simulation, DARA performed satisfactorily

• Implementation in a real environment (Base DARA) was not trivial

• Example of overlooking the effect of computational delays

• Average execution time of one loop was 528.8 ms!

Minimize delays
Keep conceptual
design

Keep hardware

9

Goals

10

Improvements

• Low-level Information Access

• Information Collection

• Information Parsing

11

Low-level Information Access

• Reward information took 100 ms to update.

• Solution: Modify mac80211 Linux kernel module
• Provides up-to-date data directly from the kernel

• However, waiting time after each action is needed
• Preliminary: reduce period to 50 ms

• Final: file read assynchronously, rest of the algorithm can proceed during wait

12

Information Collection

3 Alternatives

• Subprocess
• Allows use of simple but flexible bash commands

• Python
• Part of the algorithm is already in Python

• Rust
• Attempt to leverage compiled language speed

13

Information Parsing

• Files contain unnecessary information, requiring parsing

• Two different scenarios:
• State file – Complex

• Reward file – Simple

• 3 Alternatives
• Subprocess

• Python

• Regex

14

Information Collection Subprocess Python Rust

Average (ms) 49.637 12.805 15.107

Standard Deviation (ms) ± 4.990 ± 1.385 ± 1.546

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Collection Subprocess Python Rust

Average (ms) 49.637 12.805 15.107

Standard Deviation (ms) ± 4.990 ± 1.385 ± 1.546

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Parsing Subprocess Python Regex

State scenario (ms) 5.0318 0.0017 0.0014

Reward scenario (ms) 9.9792 0.0012 0.0018

Information Collection and Parsing

• Fastest approaches were used to enhance
DARA

• Biggest fault was due to Subprocess module

Average total time of each step:
• Base DARA 528.8 ms
• E-DARA 34.8 ms (≈94% decrease)

15

Simulation Methodology

Measure
Experimentally

Normal
Distribution of

Delays

Simulated delay
before action

Agent Mobile Node

SNR

Introduction

Methodology and Implementation

Results

Conclusions

16

17

DARA Comparisons

Perfect

• No delays

Base

• 528.8 ms
delays

Enhanced

• 34.8 ms
delays

Simulation
Trained

• 34.8 ms delays
(exploitation
only)

18

Algorithm Average Throughput (Mbit/s) Average frames lost

Ideal 13.27 —

Minstrel-HT 12.74 —

DARA no delays 13.04 1128.5

DARA base delays 6.44 4661.8

DARA enhanced delays 13.00 1189.0

Results

• E-DARA achieves 102% higher throughput than base
DARA

• E-DARA close to perfect version
• Computational delays severely affected performance

19

Simulation Training

Simulation Training:
• Training stage performed in perfect conditions (no

delays)
• Exploitation still remains with delays (34.8 ms).

Average throughput of E-DARA:

• Regular: 13.47 Mbit/s
• Simulation-Training: 13.83 Mbit/s

(2.7% increase)

• May improve performance by reducing delay
impact during training

Introduction

Methodology and Implementation

Results

Conclusions

20

Conclusions

• Computational delays are underdiscussed

• Simulations should consider delays

• Impact of delays can be significant although not apparent

• Future work can be done on analyzing different metrics, scenarios

and algorithms

21

The End

Any Questions?

22

	Slide 1: On the Analysis of Computational Delays in Reinforcement Learning-based Rate Adaptation
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Contributions
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Conclusions
	Slide 22: The End Any Questions?

