

ECG pre-processing and feature extraction tool for intelligent simulation systems

Manuel Domínguez-Morales, Adolfo Muñoz-Macho and José L. Sevillano

Index

- 1. Introduction
- **2.** ECG signal
- **3.** Software Tool
- 4. Testing
- 5. Comparative
- 6. Conclusions

1. Introduction (I)

Increase of Cardiac Problems and Sudden Deaths in Athletes

International organizations demand periodic mass screening

What is it needed?

- Professional 12-lead ECG devices
- An expert in the field
- Time to analyze the results

Test performed only 1-2 times a year in professional FIFA teams

1. Introduction (II)

- How can technology help?
 - Simulation tools that help Cardiac Doctors to train their skills
 - Pre-processing and feature extraction tools to help in the process
- There are tools already?
 - Yes, but... ONLY FOR COMMON POPULATION!!
 - Is there any problem with that? \rightarrow Athletes vs Common people
 - More muscle mass
 - Bigger and stronger heart ventricles
 - More time between ECG peaks

These tools cannot be used to detect anomalies in Athletes!!

1. Introduction (and III)

What can we do?

- Developing a customizable software tool
- This tool may...
 - ... detect anomalies in common population and athletes.
 - ... detect peaks automatically.
 - ... extract a custom report from the ECG signal.
 - ... and, thanks to all of them, help for Cardiac Doctors training.

3. Software Tool (I)

- So far... XML files from *General Electric CardioSoft 12SL ECG*
 - Soon... Contec 1200G device

3. Software Tool (II)

Characteristics:

[1] Loading and navigating

3. Software Tool (III)

[2] Configuration

3. Software Tool (IV)

[3] Custom Filtering

3. Software Tool (V)

[4] Peaks detection

3. Software Tool (VI)

[5] Report Generation

	А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	T	U
1	ID	Age	Race	Height	Weight	RR interval	QRS interval O	QT interval	QT_c interva	T inv I	T inv II	T inv III	T inv aVR	T inv aVL	T inv aVF	T inv V1	T inv V2	T inv V3	T inv V4	T inv V5	T inv V6
2	example1		18 AFRICAN	186	5 77	1234,28571	82,8571429	360	300,782903		0	0	0	0 1	1	0 ()	0	0 (D	0 0

3. Software Tool (and VII)

SIMUtools

[6*] Automatic alternative

4. Testing (I)

- Dataset collected previously:
 - PF12RED (<u>https://github.com/dradolfomunoz/PF12RED</u>)
 - Collected from professional UEFA football players from LaLiga EA SPORTS
 - ClinicalTrials No. NCT05872945.
 - **Contains**:
 - 163 raw ECG data in XML format from 54 football players (and the waveforms scanned).
 - Labels: common features and some clinical appearances like *sinus bradycardia* or *incomplete right bundle branch block*.
- **•** Tests \rightarrow Peaks detection and feature extraction
 - Evaluated one by one by a Cardiac Doctor.
 - Comparison between automatic processing report and doctor diagnosis

4. Testing (II)

SIMUlools

4. Testing (and III)

Results summary:

- Accuracy over 98% taking into account the most common markers: *segments, intervals* and *T-wave inversions*
- Discrepancies obtained → confusion between peak T and peak U.

• ¿Peak U? \rightarrow Unusual wave, produced by a bounce of the signal T.

5. Comparison

			\mathbf{Fil}	tering	Pea	\mathbf{ks}	Fea	Features		
Software Tool	Input	Leads	Auto	Manual	Auto N	Ianua	al Auto	Manu	al Free	
Edelmann et al. (2019) [6]	.mat	1	Yes	No	Yes	No	Yes	No	Yes	
Encord ECG (2023) [2]	DICOM	12	No	No	Yes	No	No	No	No	
OHIF ECG Viewer (2023) [3]	DICOM	12	No	No	Yes	No	No	No	Yes	
Waveform ECG (2008) [4]	.xml	12	No	No	Yes	No	No	No	Yes	
ECG-Viewer (2022) [1]	.dat, .txt, .csv	12	Yes	Yes	Yes	No	No	No	Yes	
ECGVisualizer (2023) [this work]	.xml	12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	

6. Conclusions

- Medical professionals need simulation tools to help them in their learning process.
 - This applies to all areas, including the detection of cardiac problems.
- When working with ECG data, it is necessary to pay attention to the PQRST peaks of each of the twelve leads.
 - The intervals between peaks and the features vary in professional athletes.
- This work presents a free software tool that, thanks to its filtering and peak detection capability, serves as a simulation tool to evaluate the expertise of the future cardiac doctors.
 - Includes XMLs loading from a 12-lead ECG, visualization, filtering, feature extraction and fully customized report generation.
- The two main contributions of this tool are the total customization of the whole process; and, secondly, the possibility of adapting the analysis to the type of person.
- Results demonstrate the correct feature detection and the future usefulness of this tool.

THANK YOU!

ECG pre-processing and feature extraction tool for intelligent simulation systems

Manuel Domínguez-Morales, Adolfo Muñoz-Macho and José L. Sevillano

