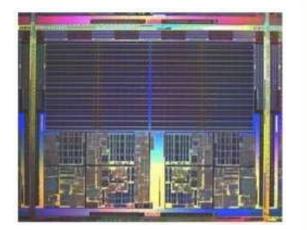


SimTools Panel Challenges in Distributed Simulation

Georgia Tech College of Computing **Computational Science and Engineering**



Technology Trends

- Exploding processor counts
 - Performance improvements coming from increased processor count rather than clock speed
 - Multiple processors on a single chip becoming widespread
- Multi-core everywhere!
 - Multiprocessors already in desktops and laptops; coming to mobile computing platforms
 - Cannot rely on Moore's law anymore for increased performance

Challenge 1: Parallel Simulation for the masses

Automate, automate, automate...

Dual Core Processor

IBM Blue Gene/L (512 nodes)

Georgia College of Tech Computing

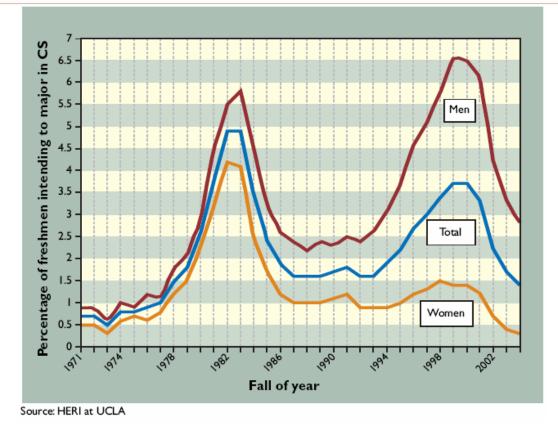
Supercomputing Trends

Cluster	Operational Date	Processors	Performance (Teraflops)
ASCI Red	1997	4,536	1.0
ASCI White	2000	8,192	7.3
ASCI Q	2002	8,192	13.8
Earth Simulator	2002	5,120	35.8 System
ASCI Red Storm	2004	10,880t 2 midplanes	64 3641 65.5 36.1 (131,072 CPUs)
NASA Columbia	Compute 2004 6 compute 1/0 Card 0-2 1/0	ard 1024 nodes cards 10,160 ^{US} ards (8x8x16)	180/51.8 3211.8
ASC Purple	FRU (field 005 (64 CP replaceable 2005 (4x4x 25mmx32mm 90/180	10,240	2.500 sq.ft. 63.3
Blue Gene/L	2 nodes (4 CPUs) (2x1x12005 2x(2.8/5.6) GF/s	^{DDR} 131,072	280.6 (367 peak)

100,000+ processor machines are already here 1,000,000+ processor machines are coming

Source: Top500 List

Computing


Tech

Challenge 2: Parallel Simulations on million processor systems Model development; debugging; validation; resource allocation **Georgia**

Computational Science and Engineering Division

Students Entering Computer Science

Challenge 3: creating workforce with enough computing savvy to exploit parallel simulation techniques

Georgia

Tech

College of

Computing

- Diversity and underrepresented groups
- Parallel computing education

Real-Time Decision Support

- A tsunami of data... financial, biomedical, transportation, environment, surveillance, ...
- Computational models to aid or automate real-time decision making processes
 - Build upon maturation and growing deployment of sensors, networks, ubiquitous computing
- Combine live data with on-line simulations for state prediction and optimization
 - Emergency response and management (terrorist attacks, hurricane evacuation)
 - Transportation system management
 - Military operations
 - Dynamic supply chain optimization

Challenge 4: Real-time decision support that works!

College of Computing

Distributed Simulation Survey

Steffen Straßburger, Thomas Schulze, Richard Fujimoto, "Future Trends in Distributed Simulation and Distributed Virtual Environments," Fraunhofer Institute, 2008.

Survey of DS and DVE research community; 61 respondents Findings:

- DS and DVE has high practical relevance
- Great need to exploit heterogeneous distributed resources
- Technology largely under-exploited outside Defense industry
- Challenges include
 - Achieving both high interactivity and high consistency in DVEs
 - Easy-to-use synchronization; solving the "zero lookahead" problem
 - True "plug 'n play" simulation capabilities
 - (Semi-) automated semantic interoperability between domains

